Equivariant Eilenberg-Watts theorems for locally compact quantum groups

Joeri De Ro

Institute of Mathematics of the Polish Academy of Sciences

November 10, 2025

What is this talk about?

Let A, B be von Neumann algebras.

(Rieffel, 1974) We have the categorical equivalence

$$Corr(A, B) \simeq Fun(Rep(B), Rep(A)),$$

where

- ► Corr(A, B) denotes the category of all A-B-correspondences,
- ► Fun(Rep(B), Rep(A)) denotes the category of all normal *-functors Rep(B) \rightarrow Rep(A).

What is this talk about?

Let A, B be von Neumann algebras.

(Rieffel, 1974) We have the categorical equivalence

$$Corr(A, B) \simeq Fun(Rep(B), Rep(A)),$$

where

- Corr(A, B) denotes the category of all A-B-correspondences,
- ► Fun(Rep(B), Rep(A)) denotes the category of all normal *-functors Rep(B) \rightarrow Rep(A).

Question: If also $A \bowtie \mathbb{G}$ and $B \bowtie \mathbb{G}$, where \mathbb{G} is a locally compact quantum group, how can we generalize this equivalence?

Correspondences: the non-equivariant setting

Let A, B be von Neumann algebras.

Connes (1980)

An A-B-correspondence consists of a Hilbert space ${\mathcal H}$ together with:

- 1. a normal, unital *-representation $\pi: A \to B(\mathcal{H})$,
- 2. a normal, unital anti-*-representation $\rho: B \to B(\mathcal{H})$, such that $\pi(a)\rho(b) = \rho(b)\pi(a)$ for all $a \in A$ and all $b \in B$. We write $\mathcal{H} = (\mathcal{H}, \pi, \rho) \in \mathsf{Corr}(A, B)$.

Correspondences: the non-equivariant setting

Let A, B be von Neumann algebras.

Connes (1980)

An A-B-correspondence consists of a Hilbert space ${\mathcal H}$ together with:

- 1. a normal, unital *-representation $\pi: A \to B(\mathcal{H})$,
- 2. a normal, unital anti-*-representation $\rho: B \to B(\mathcal{H})$, such that $\pi(a)\rho(b) = \rho(b)\pi(a)$ for all $a \in A$ and all $b \in B$. We write $\mathcal{H} = (\mathcal{H}, \pi, \rho) \in \mathsf{Corr}(A, B)$.
 - ▶ Given $\mathcal{H}, \mathcal{K} \in \text{Corr}(A, B)$, we write ${}_{A}\mathcal{L}_{B}(\mathcal{H}, \mathcal{K})$ for the space of bounded A-B-bimodule maps.

Correspondences: the non-equivariant setting

Let A, B be von Neumann algebras.

Connes (1980)

An A-B-correspondence consists of a Hilbert space ${\mathcal H}$ together with:

- 1. a normal, unital *-representation $\pi: A \to B(\mathcal{H})$,
- 2. a normal, unital anti-*-representation $\rho: B \to B(\mathcal{H})$, such that $\pi(a)\rho(b) = \rho(b)\pi(a)$ for all $a \in A$ and all $b \in B$. We write $\mathcal{H} = (\mathcal{H}, \pi, \rho) \in \mathsf{Corr}(A, B)$.
 - ▶ Given $\mathcal{H}, \mathcal{K} \in \text{Corr}(A, B)$, we write ${}_{A}\mathcal{L}_{B}(\mathcal{H}, \mathcal{K})$ for the space of bounded A-B-bimodule maps.
 - ▶ We also write $Rep(A) := Corr(A, \mathbb{C})$ to denote the category of unital normal *-representations of A on Hilbert spaces.

Examples:

Examples:

1. The trivial A-A-correspondence $(L^2(A), \pi_A, \rho_A)$.

Examples:

- 1. The trivial A-A-correspondence $(L^2(A), \pi_A, \rho_A)$.
- 2. The coarse A-A-correspondence $(L^2(A) \otimes L^2(A), a \mapsto \pi_A(a) \otimes 1, a \mapsto 1 \otimes \rho_A(a)).$

Examples:

- 1. The trivial A-A-correspondence $(L^2(A), \pi_A, \rho_A)$.
- 2. The coarse A-A-correspondence $(L^2(A) \otimes L^2(A), a \mapsto \pi_A(a) \otimes 1, a \mapsto 1 \otimes \rho_A(a)).$
- Normal ucp map Φ : A → B gives rise to an A-B-correspondence H_Φ.

Examples:

- 1. The trivial A-A-correspondence $(L^2(A), \pi_A, \rho_A)$.
- 2. The coarse A-A-correspondence $(L^2(A) \otimes L^2(A), a \mapsto \pi_A(a) \otimes 1, a \mapsto 1 \otimes \rho_A(a)).$
- Normal ucp map Φ : A → B gives rise to an A-B-correspondence H_Φ.

Natural objects to understand von Neumann algebras:

- 1. Morita equivalence.
- 2. Injectivity.
- 3. Haagerup property.
- 4. Property (T).
- 5. ...

► There is a natural operation (Connes fusion tensor product)

$$\mathsf{Corr}(A,B) \times \mathsf{Corr}(B,C) \to \mathsf{Corr}(A,C) : (\mathcal{H},\mathcal{K}) \mapsto \mathcal{H} \boxtimes_B \mathcal{K}.$$

► There is a natural operation (Connes fusion tensor product)

$$Corr(A, B) \times Corr(B, C) \rightarrow Corr(A, C) : (\mathcal{H}, \mathcal{K}) \mapsto \mathcal{H} \boxtimes_B \mathcal{K}.$$

▶ More concretely, if $\mathcal{H} \in \text{Corr}(A, B)$ and $\mathcal{K} \in \text{Corr}(B, C)$, endow the tensor product $\mathscr{L}_B(L^2(B), \mathcal{H}) \odot_B \mathcal{K}$ with the semi-inner product

$$\langle x \otimes_B \xi, y \otimes_B \eta \rangle := \langle \xi, \pi_{\mathcal{K}}(\pi_B^{-1}(x^*y))\eta \rangle.$$

► There is a natural operation (Connes fusion tensor product)

$$Corr(A, B) \times Corr(B, C) \rightarrow Corr(A, C) : (\mathcal{H}, \mathcal{K}) \mapsto \mathcal{H} \boxtimes_B \mathcal{K}.$$

▶ More concretely, if $\mathcal{H} \in \text{Corr}(A, B)$ and $\mathcal{K} \in \text{Corr}(B, C)$, endow the tensor product $\mathscr{L}_B(L^2(B), \mathcal{H}) \odot_B \mathcal{K}$ with the semi-inner product

$$\langle x \otimes_B \xi, y \otimes_B \eta \rangle := \langle \xi, \pi_{\mathcal{K}}(\pi_B^{-1}(x^*y))\eta \rangle.$$

▶ Denote its separation-completion by $\mathcal{H} \boxtimes_B \mathcal{K}$.

► There is a natural operation (Connes fusion tensor product)

$$Corr(A, B) \times Corr(B, C) \rightarrow Corr(A, C) : (\mathcal{H}, \mathcal{K}) \mapsto \mathcal{H} \boxtimes_B \mathcal{K}.$$

▶ More concretely, if $\mathcal{H} \in \text{Corr}(A, B)$ and $\mathcal{K} \in \text{Corr}(B, C)$, endow the tensor product $\mathscr{L}_B(L^2(B), \mathcal{H}) \odot_B \mathcal{K}$ with the semi-inner product

$$\langle x \otimes_B \xi, y \otimes_B \eta \rangle := \langle \xi, \pi_{\mathcal{K}}(\pi_B^{-1}(x^*y))\eta \rangle.$$

- ▶ Denote its separation-completion by $\mathcal{H} \boxtimes_B \mathcal{K}$.
- ▶ This Hilbert space becomes an A-C-correspondence through

$$\pi_{\boxtimes}(a)\rho_{\boxtimes}(c)(x\otimes_B\xi)=\pi_{\mathcal{H}}(a)x\otimes_B\rho_{\mathcal{K}}(c)\xi.$$

From correspondence to functor

▶ Given $\mathcal{G} \in \mathsf{Corr}(A, B)$ and $\mathcal{H} \in \mathsf{Rep}(B) = \mathsf{Corr}(B, \mathbb{C})$, form $\mathcal{G} \boxtimes_B \mathcal{H} \in \mathsf{Corr}(A, \mathbb{C}) = \mathsf{Rep}(A).$

From correspondence to functor

▶ Given $\mathcal{G} \in \mathsf{Corr}(A, B)$ and $\mathcal{H} \in \mathsf{Rep}(B) = \mathsf{Corr}(B, \mathbb{C})$, form $\mathcal{G} \boxtimes_B \mathcal{H} \in \mathsf{Corr}(A, \mathbb{C}) = \mathsf{Rep}(A).$

▶ It leads to the normal *-functor

$$F_{\mathcal{G}}: \mathsf{Rep}(B) \to \mathsf{Rep}(A): \mathcal{H} \mapsto \mathcal{G} \boxtimes_B \mathcal{H}.$$

From correspondence to functor

▶ Given $\mathcal{G} \in \operatorname{Corr}(A, B)$ and $\mathcal{H} \in \operatorname{Rep}(B) = \operatorname{Corr}(B, \mathbb{C})$, form $\mathcal{G} \boxtimes_B \mathcal{H} \in \operatorname{Corr}(A, \mathbb{C}) = \operatorname{Rep}(A).$

It leads to the normal *-functor

$$F_{\mathcal{G}}: \mathsf{Rep}(B) \to \mathsf{Rep}(A): \mathcal{H} \mapsto \mathcal{G} \boxtimes_B \mathcal{H}.$$

In turn, this leads to the functor

$$P: Corr(A, B) \rightarrow Fun(Rep(B), Rep(A)) : \mathcal{G} \mapsto F_{\mathcal{G}}.$$

▶ Conversely, let a normal *-functor $F : Rep(B) \rightarrow Rep(A)$ be given.

- ▶ Conversely, let a normal *-functor $F : Rep(B) \rightarrow Rep(A)$ be given.
- ► Consider $(L^2(B), \pi_B) \in \text{Rep}(B)$ and consider $(\mathcal{G}_F, \pi_F) := F((L^2(B), \pi_B)) \in \text{Rep}(A)$.

- ▶ Conversely, let a normal *-functor $F : Rep(B) \rightarrow Rep(A)$ be given.
- ► Consider $(L^2(B), \pi_B) \in \text{Rep}(B)$ and consider $(\mathcal{G}_F, \pi_F) := F((L^2(B), \pi_B)) \in \text{Rep}(A)$.
- ▶ Then $\rho_B(b) \in {}_B\mathcal{L}((L^2(B), \pi_B))$, so it makes sense to define

$$\rho_F(b)=F(\rho_B(b)),\quad b\in B.$$

- ▶ Conversely, let a normal *-functor $F : Rep(B) \rightarrow Rep(A)$ be given.
- ► Consider $(L^2(B), \pi_B) \in \text{Rep}(B)$ and consider $(\mathcal{G}_F, \pi_F) := F((L^2(B), \pi_B)) \in \text{Rep}(A)$.
- ▶ Then $\rho_B(b) \in {}_B\mathcal{L}((L^2(B), \pi_B))$, so it makes sense to define

$$\rho_F(b) = F(\rho_B(b)), \quad b \in B.$$

▶ Then $(\mathcal{G}_F, \pi_F, \rho_F) \in \text{Corr}(A, B)$.

- ▶ Conversely, let a normal *-functor $F : Rep(B) \rightarrow Rep(A)$ be given.
- ► Consider $(L^2(B), \pi_B) \in \text{Rep}(B)$ and consider $(\mathcal{G}_F, \pi_F) := F((L^2(B), \pi_B)) \in \text{Rep}(A)$.
- ▶ Then $\rho_B(b) \in {}_B\mathcal{L}((L^2(B), \pi_B))$, so it makes sense to define

$$\rho_F(b) = F(\rho_B(b)), \quad b \in B.$$

- ► Then $(\mathcal{G}_F, \pi_F, \rho_F) \in \text{Corr}(A, B)$.
- ▶ If $\eta = (\eta_{\mathcal{H}})_{\mathcal{H} \in \mathsf{Rep}(B)} \in \mathsf{Nat}(F, G)$, then $\eta_{L^2(B)} \in {}_{A}\mathcal{L}_{B}(\mathcal{G}_F, \mathcal{G}_G)$.

- ▶ Conversely, let a normal *-functor $F : Rep(B) \rightarrow Rep(A)$ be given.
- ► Consider $(L^2(B), \pi_B) \in \text{Rep}(B)$ and consider $(\mathcal{G}_F, \pi_F) := F((L^2(B), \pi_B)) \in \text{Rep}(A)$.
- ▶ Then $\rho_B(b) \in {}_B\mathscr{L}((L^2(B), \pi_B))$, so it makes sense to define

$$\rho_F(b) = F(\rho_B(b)), \quad b \in B.$$

- ▶ Then $(\mathcal{G}_F, \pi_F, \rho_F) \in \text{Corr}(A, B)$.
- ▶ If $\eta = (\eta_{\mathcal{H}})_{\mathcal{H} \in \mathsf{Rep}(B)} \in \mathsf{Nat}(F, G)$, then $\eta_{L^2(B)} \in {}_{A}\mathcal{L}_{B}(\mathcal{G}_F, \mathcal{G}_G)$.
- This leads to the functor

$$Q : \operatorname{Fun}(\operatorname{Rep}(B), \operatorname{Rep}(A)) \to \operatorname{Corr}(A, B).$$

Generators

Generators

A generator for Rep(A) consists of a representation $\mathcal{H} \in Rep(A)$ such that for every $\mathcal{K} \in Rep(A)$, there exists an index set I such that

$$\mathcal{K} \hookrightarrow \bigoplus_{i \in I} \mathcal{H}.$$

Generators

Generators

A generator for Rep(A) consists of a representation $\mathcal{H} \in Rep(A)$ such that for every $\mathcal{K} \in Rep(A)$, there exists an index set I such that

$$\mathcal{K} \hookrightarrow \bigoplus_{i \in I} \mathcal{H}.$$

Fact: $\mathcal{H} \in \text{Rep}(A)$ generator $\iff \pi_{\mathcal{H}}$ is faithful.

Generators

Generators

A generator for Rep(A) consists of a representation $\mathcal{H} \in \text{Rep}(A)$ such that for every $\mathcal{K} \in \text{Rep}(A)$, there exists an index set I such that

$$\mathcal{K} \hookrightarrow \bigoplus_{i \in I} \mathcal{H}.$$

Fact: $\mathcal{H} \in \text{Rep}(A)$ generator $\iff \pi_{\mathcal{H}}$ is faithful.

Rieffel (1974)

Let $\mathcal{H} \in \text{Rep}(B)$ be a generator and $F, G \in \text{Fun}(\text{Rep}(B), \text{Rep}(A))$. Then the map

$$\mathsf{Nat}(F,G) \to \{x \in {}_{A}\mathscr{L}(F(\mathcal{H}),G(\mathcal{H})) \mid \forall y \in {}_{B}\mathscr{L}(\mathcal{H}) : xF(y) = G(y)x\}$$

given by $\eta = (\eta_{\mathcal{K}})_{\mathcal{K} \in \mathsf{Rep}(B)} \mapsto \eta_{\mathcal{H}}$ is bijective.

Rieffel (1974) - Eilenberg-Watts theorem

The functors

$$P : Corr(A, B) \rightarrow Fun(Rep(B), Rep(A)),$$

 $Q : Fun(Rep(B), Rep(A)) \rightarrow Corr(A, B)$

are quasi-inverse to each other.

Proof.

Rieffel (1974) - Eilenberg-Watts theorem

The functors

$$P : Corr(A, B) \rightarrow Fun(Rep(B), Rep(A)),$$

 $Q : Fun(Rep(B), Rep(A)) \rightarrow Corr(A, B)$

are quasi-inverse to each other.

Proof.

It is straightforward that $Q \circ P \cong id$:

$$QP(\mathcal{G}) = F_{\mathcal{G}}(L^2(B)) = \mathcal{G} \boxtimes_B L^2(B) \cong \mathcal{G}.$$

Rieffel (1974) - Eilenberg-Watts theorem

The functors

$$P : Corr(A, B) \rightarrow Fun(Rep(B), Rep(A)),$$

 $Q : Fun(Rep(B), Rep(A)) \rightarrow Corr(A, B)$

are quasi-inverse to each other.

Proof.

It is straightforward that $Q \circ P \cong id$:

$$QP(\mathcal{G}) = F_{\mathcal{G}}(L^2(B)) = \mathcal{G} \boxtimes_B L^2(B) \cong \mathcal{G}.$$

Therefore, it suffices to show that Q is fully faithful. Thus, we need to argue that

$$Nat(F,G) \rightarrow {}_{A}\mathscr{L}_{B}(\mathcal{G}_{F},\mathcal{G}_{G}) : \eta \mapsto \eta_{L^{2}(B)}$$

is bijective. This is fine.

We have the equivalence

$$Corr(A, B) \simeq Fun(Rep(B), Rep(A)).$$

Question: If also $A \bowtie \mathbb{G}$ and $B \bowtie \mathbb{G}$, where \mathbb{G} is a locally compact quantum group, how can we generalize this equivalence?

Locally compact quantum groups

Kustermans-Vaes (2000)

A locally compact quantum group $\mathbb G$ consists of the data (M,Δ,φ,ψ) where

- M is a von Neumann algebra
- ▶ $\Delta: M \to M \bar{\otimes} M$ is a unital, normal, *-homomorphism satisfying $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.
- φ is a left invariant nsf weight on M.
- ψ is a right invariant nsf weight on M.

Locally compact quantum groups

Kustermans-Vaes (2000)

A locally compact quantum group $\mathbb G$ consists of the data (M,Δ,φ,ψ) where

- ► *M* is a von Neumann algebra
- ▶ $\Delta: M \to M \bar{\otimes} M$ is a unital, normal, *-homomorphism satisfying $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.
- φ is a left invariant nsf weight on M.
- ψ is a right invariant nsf weight on M.
- We write $M = L^{\infty}(\mathbb{G})$.

Locally compact quantum groups

Kustermans-Vaes (2000)

A locally compact quantum group $\mathbb G$ consists of the data (M,Δ,φ,ψ) where

- ► *M* is a von Neumann algebra
- ▶ $\Delta: M \to M \bar{\otimes} M$ is a unital, normal, *-homomorphism satisfying $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.
- φ is a left invariant nsf weight on M.
- ψ is a right invariant nsf weight on M.
- We write $M = L^{\infty}(\mathbb{G})$.
- ▶ Every lcqg \mathbb{G} admits a lcqg $\hat{\mathbb{G}}$ (the Pontryagin dual) such that $\hat{\mathbb{G}} = \mathbb{G}$.

Actions on von Neumann algebras

Actions of locally compact quantum groups

Let $\mathbb G$ be a lcqg and A a von Neumann algebra. An action $\alpha:A \bowtie \mathbb G$ consists of a unital, normal, isometric *-homomorphism $\alpha:A \to A\bar\otimes L^\infty(\mathbb G)$ satisfying $(\mathrm{id}\otimes\Delta)\alpha=(\alpha\otimes\mathrm{id})\alpha$.

Actions on von Neumann algebras

Actions of locally compact quantum groups

Let $\mathbb G$ be a lcqg and A a von Neumann algebra. An action $\alpha:A \bowtie \mathbb G$ consists of a unital, normal, isometric *-homomorphism $\alpha:A \to A\bar\otimes L^\infty(\mathbb G)$ satisfying $(\mathrm{id}\otimes\Delta)\alpha=(\alpha\otimes\mathrm{id})\alpha$.

Example: Let $U \in B(\mathcal{H}) \bar{\otimes} L^{\infty}(\mathbb{G})$ be a unitary \mathbb{G} -representation, i.e. U is a unitary and $(\mathrm{id} \otimes \Delta)(U) = U_{12}U_{13}$. Then

$$\alpha: B(\mathcal{H}) \to B(\mathcal{H}) \bar{\otimes} L^{\infty}(\mathbb{G}): x \mapsto U(x \otimes 1) U^*$$

defines an action $B(\mathcal{H}) \bowtie \mathbb{G}$.

Equivariant correspondences

Let $\alpha:A \hookrightarrow \mathbb{G}$ and $\beta:B \hookrightarrow \mathbb{G}$ be actions. A \mathbb{G} -A-B-correspondence consists of the data (\mathcal{H},π,ρ,U) such that (\mathcal{H},π,ρ) is an A-B-correspondence and $U \in B(\mathcal{H}) \bar{\otimes} L^{\infty}(\mathbb{G})$ is a unitary \mathbb{G} -representation such that

$$(\pi \otimes id)(\alpha(a)) = U(\pi(a) \otimes 1)U^*, \quad (\rho \otimes R)\beta(b) = U^*(\rho(b) \otimes 1)U$$

for all $a \in A$ and all $b \in B$. We write $\mathcal{H} = (\mathcal{H}, \pi, \rho, U) \in \mathsf{Corr}^{\mathbb{G}}(A, B)$.

Equivariant correspondences

Let $\alpha:A
ightharpoonup \mathbb{G}$ and $\beta:B
ightharpoonup \mathbb{G}$ be actions. A \mathbb{G} -A-B-correspondence consists of the data (\mathcal{H},π,ρ,U) such that (\mathcal{H},π,ρ) is an A-B-correspondence and $U \in B(\mathcal{H}) \bar{\otimes} L^{\infty}(\mathbb{G})$ is a unitary \mathbb{G} -representation such that

$$(\pi \otimes \mathrm{id})(\alpha(a)) = U(\pi(a) \otimes 1)U^*, \quad (\rho \otimes R)\beta(b) = U^*(\rho(b) \otimes 1)U$$

for all $a \in A$ and all $b \in B$. We write $\mathcal{H} = (\mathcal{H}, \pi, \rho, U) \in \mathsf{Corr}^{\mathbb{G}}(A, B)$.

▶ Given $\mathcal{H}, \mathcal{K} \in \mathsf{Corr}^{\mathbb{G}}(A, B)$, we write ${}_{A}\mathscr{L}_{B}^{\mathbb{G}}(\mathcal{H}, \mathcal{K})$ for the space of bounded A-B-bimodule maps that also intertwine the associated \mathbb{G} -representations.

Equivariant correspondences

Let $\alpha:A \hookrightarrow \mathbb{G}$ and $\beta:B \hookrightarrow \mathbb{G}$ be actions. A \mathbb{G} -A-B-correspondence consists of the data (\mathcal{H},π,ρ,U) such that (\mathcal{H},π,ρ) is an A-B-correspondence and $U \in B(\mathcal{H}) \bar{\otimes} L^{\infty}(\mathbb{G})$ is a unitary \mathbb{G} -representation such that

$$(\pi \otimes id)(\alpha(a)) = U(\pi(a) \otimes 1)U^*, \quad (\rho \otimes R)\beta(b) = U^*(\rho(b) \otimes 1)U$$

for all $a \in A$ and all $b \in B$. We write $\mathcal{H} = (\mathcal{H}, \pi, \rho, U) \in \mathsf{Corr}^{\mathbb{G}}(A, B)$.

- ▶ Given $\mathcal{H}, \mathcal{K} \in \mathsf{Corr}^{\mathbb{G}}(A, B)$, we write ${}_{A}\mathscr{L}^{\mathbb{G}}_{B}(\mathcal{H}, \mathcal{K})$ for the space of bounded A-B-bimodule maps that also intertwine the associated \mathbb{G} -representations.
- We also write $Rep^{\mathbb{G}}(A) := Corr^{\mathbb{G}}(A, \mathbb{C})$.

Vaes (2001)

To every action $\alpha:A \bowtie \mathbb{G}$, there is associated a canonical unitary \mathbb{G} -representation $U_{\alpha} \in B(L^2(A)) \bar{\otimes} L^{\infty}(\mathbb{G})$ satisfying

$$(\pi_A \otimes id)(\alpha(a)) = U_{\alpha}(\pi_A(a) \otimes 1)U_{\alpha}^*, \quad a \in A,$$

$$(\rho_A \otimes R)(\alpha(a)) = U_{\alpha}^*(\rho_A(a) \otimes 1)U_{\alpha}, \quad a \in A.$$

In other words, $(L^2(A), \pi_A, \rho_A, U_\alpha) \in \mathsf{Corr}^{\mathbb{G}}(A, A)$.

Vaes (2001)

To every action $\alpha:A \bowtie \mathbb{G}$, there is associated a canonical unitary \mathbb{G} -representation $U_{\alpha} \in B(L^{2}(A)) \bar{\otimes} L^{\infty}(\mathbb{G})$ satisfying

$$(\pi_A \otimes \mathsf{id})(\alpha(a)) = U_\alpha(\pi_A(a) \otimes 1) U_\alpha^*, \quad a \in A,$$

$$(\rho_A \otimes R)(\alpha(a)) = U_\alpha^*(\rho_A(a) \otimes 1) U_\alpha, \quad a \in A.$$

In other words, $(L^2(A), \pi_A, \rho_A, U_\alpha) \in \mathsf{Corr}^\mathbb{G}(A, A)$.

► Every \mathbb{G} -equivariant normal ucp map $\Phi : A \to B$ gives rise to a \mathbb{G} -A-B-correspondence.

Vaes (2001)

To every action $\alpha:A \bowtie \mathbb{G}$, there is associated a canonical unitary \mathbb{G} -representation $U_{\alpha} \in B(L^2(A)) \bar{\otimes} L^{\infty}(\mathbb{G})$ satisfying

$$(\pi_A \otimes \mathsf{id})(\alpha(a)) = U_\alpha(\pi_A(a) \otimes 1) U_\alpha^*, \quad a \in A,$$

$$(\rho_A \otimes R)(\alpha(a)) = U_\alpha^*(\rho_A(a) \otimes 1) U_\alpha, \quad a \in A.$$

In other words, $(L^2(A), \pi_A, \rho_A, U_\alpha) \in \mathsf{Corr}^{\mathbb{G}}(A, A)$.

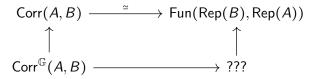
- ► Every \mathbb{G} -equivariant normal ucp map $\Phi: A \to B$ gives rise to a \mathbb{G} -A-B-correspondence.
- There is a natural operation

$$\boxtimes_B : \mathsf{Corr}^{\mathbb{G}}(A, B) \times \mathsf{Corr}^{\mathbb{G}}(B, C) \to \mathsf{Corr}^{\mathbb{G}}(A, C).$$

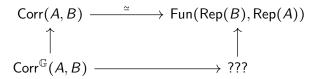
$$\operatorname{\mathsf{Corr}}(A,B) \xrightarrow{\simeq} \operatorname{\mathsf{Fun}}(\operatorname{\mathsf{Rep}}(B),\operatorname{\mathsf{Rep}}(A))$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\operatorname{\mathsf{Corr}}^{\mathbb{G}}(A,B) \xrightarrow{\simeq} ???$$



Expectation: G-A-B-correspondences ≃ Functors Rep(B) → Rep(A) with 'extra structure'.



Expectation: G-A-B-correspondences ≃ Functors Rep(B) → Rep(A) with 'extra structure'.

Andruskiewitsch-Mombelli (2007)

Let H be a fd Hopf algebra and let A, B be right H-comodule algebras. Then Rep(A)
subseteq Rep(H) via

$$V \in \operatorname{\mathsf{Rep}}(A), W \in \operatorname{\mathsf{Rep}}(H) \rightsquigarrow V \odot W \in \operatorname{\mathsf{Rep}}(A), \quad a(v \otimes w) = a_{(0)}v \otimes a_{(1)}w,$$

and

$$\operatorname{Corr}^H(A, B) \simeq \operatorname{Fun}_{\operatorname{Rep}(H)}(\operatorname{Rep}(B), \operatorname{Rep}(A)).$$

The analogue of this situation would be that if $A \bowtie \mathbb{G}$, then

$$\mathsf{Rep}(A) \backsim \mathsf{Rep}(\hat{\mathbb{G}}) \cong \mathsf{Rep}(C_0^u(\mathbb{G}))$$

and

$$\mathsf{Corr}^{\mathbb{G}}(A,B) \simeq \mathsf{Fun}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{Rep}(B),\mathsf{Rep}(A)).$$

The analogue of this situation would be that if $A \bowtie \mathbb{G}$, then

$$\mathsf{Rep}(A) \backsim \mathsf{Rep}(\hat{\mathbb{G}}) \cong \mathsf{Rep}(C_0^u(\mathbb{G}))$$

and

$$\mathsf{Corr}^{\mathbb{G}}(A,B) \simeq \mathsf{Fun}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{Rep}(B),\mathsf{Rep}(A)).$$

If $\mathcal{H} \in \text{Rep}(A)$ and $\mathcal{K} \in \text{Rep}(\hat{\mathbb{G}}) \cong \text{Rep}(C_0^u(\mathbb{G}))$, we want to make sense of

$$a.(\xi \otimes \eta) = \alpha(a).(\xi \otimes \eta).$$

The analogue of this situation would be that if $A \bowtie \mathbb{G}$, then

$$\mathsf{Rep}(A) \bowtie \mathsf{Rep}(\hat{\mathbb{G}}) \cong \mathsf{Rep}(C_0^u(\mathbb{G}))$$

and

$$\mathsf{Corr}^{\mathbb{G}}(A,B) \simeq \mathsf{Fun}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{Rep}(B),\mathsf{Rep}(A)).$$

If $\mathcal{H} \in \text{Rep}(A)$ and $\mathcal{K} \in \text{Rep}(\hat{\mathbb{G}}) \cong \text{Rep}(C_0^u(\mathbb{G}))$, we want to make sense of

$$a.(\xi \otimes \eta) = \alpha(a).(\xi \otimes \eta).$$

Problem: $\alpha(a) \in A \bar{\otimes} L^{\infty}(\mathbb{G})$, so the second leg of α does not live in $C_0^u(\mathbb{G})$ (or a completion thereof).

The module category $Rep(A) ightharpoonup Rep(\hat{\mathbb{G}})$

De Commer - Krajczok (2025)

Let $\alpha:A \bowtie \mathbb{G}$ be an action. There exists a unique unital, normal, isometric *-homomorphism

$$\alpha^u:A\to A\bar{\otimes}\,C_0^u(\mathbb{G})^{**}$$

such that for every $(\mathcal{H}, \pi, U) \in \mathsf{Corr}^{\mathbb{G}}(A, \mathbb{C}) = \mathsf{Rep}^{\mathbb{G}}(A)$, we have $(\pi \otimes \mathsf{id})\alpha^u(a) = \mathbb{U}(\pi(a) \otimes 1)\mathbb{U}^*, \quad a \in A.$

Here, we view $\mathbb{U} \in M(\mathcal{K}(\mathcal{H}) \otimes C_0^u(\mathbb{G})) \subseteq B(\mathcal{H}) \bar{\otimes} C_0^u(\mathbb{G})^{**}$.

The module category $Rep(A) ightharpoonup Rep(\hat{\mathbb{G}})$

De Commer - Krajczok (2025)

Let $\alpha:A \bowtie \mathbb{G}$ be an action. There exists a unique unital, normal, isometric *-homomorphism

$$\alpha^u: A \to A \bar{\otimes} C_0^u(\mathbb{G})^{**}$$

such that for every $(\mathcal{H},\pi,U)\in \mathrm{Corr}^{\mathbb{G}}(A,\mathbb{C})=\mathrm{Rep}^{\mathbb{G}}(A)$, we have $(\pi\otimes\mathrm{id})\alpha^u(a)=\mathbb{U}(\pi(a)\otimes 1)\mathbb{U}^*,\quad a\in A.$

Here, we view $\mathbb{U} \in M(\mathcal{K}(\mathcal{H}) \otimes C_0^u(\mathbb{G})) \subseteq B(\mathcal{H}) \bar{\otimes} C_0^u(\mathbb{G})^{**}$.

▶ Let $\mathcal{H} \in \text{Rep}(A)$ and $\mathcal{K} \in \text{Rep}(\hat{\mathbb{G}})$. We want to define an object $\mathcal{H} \triangleleft \mathcal{K} \in \text{Rep}(A)$.

- ▶ Let $\mathcal{H} \in \text{Rep}(A)$ and $\mathcal{K} \in \text{Rep}(\hat{\mathbb{G}})$. We want to define an object $\mathcal{H} \triangleleft \mathcal{K} \in \text{Rep}(A)$.
- Consider $\phi_{\mathcal{K}}: C_0^u(\mathbb{G}) \to B(\mathcal{K})$ and its normal extension $\tilde{\phi}_{\mathcal{K}}: C_0^u(\mathbb{G})^{**} \to B(\mathcal{K})$. Then we can define

$$\pi_{\mathcal{H} \triangleleft \mathcal{K}} : A \to B(\mathcal{H} \otimes \mathcal{K}) : a \mapsto (\pi_{\mathcal{H}} \otimes \tilde{\phi}_{\mathcal{K}})(\alpha^{u}(a)).$$

- ▶ Let $\mathcal{H} \in \text{Rep}(A)$ and $\mathcal{K} \in \text{Rep}(\hat{\mathbb{G}})$. We want to define an object $\mathcal{H} \triangleleft \mathcal{K} \in \text{Rep}(A)$.
- Consider $\phi_{\mathcal{K}}: C_0^u(\mathbb{G}) \to B(\mathcal{K})$ and its normal extension $\tilde{\phi}_{\mathcal{K}}: C_0^u(\mathbb{G})^{**} \to B(\mathcal{K})$. Then we can define

$$\pi_{\mathcal{H} \triangleleft \mathcal{K}} : A \to B(\mathcal{H} \otimes \mathcal{K}) : a \mapsto (\pi_{\mathcal{H}} \otimes \tilde{\phi}_{\mathcal{K}})(\alpha^{u}(a)).$$

 $\blacktriangleright \mathcal{H} \triangleleft \mathcal{K} := (\mathcal{H} \otimes \mathcal{K}, \pi_{\mathcal{H} \triangleleft \mathcal{K}}) \in \mathsf{Rep}(A).$

- ▶ Let $\mathcal{H} \in \text{Rep}(A)$ and $\mathcal{K} \in \text{Rep}(\hat{\mathbb{G}})$. We want to define an object $\mathcal{H} \triangleleft \mathcal{K} \in \text{Rep}(A)$.
- Consider $\phi_{\mathcal{K}}: C_0^u(\mathbb{G}) \to B(\mathcal{K})$ and its normal extension $\tilde{\phi}_{\mathcal{K}}: C_0^u(\mathbb{G})^{**} \to B(\mathcal{K})$. Then we can define

$$\pi_{\mathcal{H} \triangleleft \mathcal{K}} : A \to B(\mathcal{H} \otimes \mathcal{K}) : a \mapsto (\pi_{\mathcal{H}} \otimes \tilde{\phi}_{\mathcal{K}})(\alpha^{u}(a)).$$

- $\vdash \mathcal{H} \triangleleft \mathcal{K} := (\mathcal{H} \otimes \mathcal{K}, \pi_{\mathcal{H} \triangleleft \mathcal{K}}) \in \mathsf{Rep}(A).$
- ▶ This leads to the functor $Rep(A) \times Rep(\hat{\mathbb{G}}) \to Rep(A)$.

- ▶ Let $\mathcal{H} \in \text{Rep}(A)$ and $\mathcal{K} \in \text{Rep}(\hat{\mathbb{G}})$. We want to define an object $\mathcal{H} \triangleleft \mathcal{K} \in \text{Rep}(A)$.
- Consider $\phi_{\mathcal{K}}: C_0^u(\mathbb{G}) \to B(\mathcal{K})$ and its normal extension $\tilde{\phi}_{\mathcal{K}}: C_0^u(\mathbb{G})^{**} \to B(\mathcal{K})$. Then we can define

$$\pi_{\mathcal{H} \triangleleft \mathcal{K}} : A \to B(\mathcal{H} \otimes \mathcal{K}) : a \mapsto (\pi_{\mathcal{H}} \otimes \tilde{\phi}_{\mathcal{K}})(\alpha^{u}(a)).$$

- $\vdash \mathcal{H} \triangleleft \mathcal{K} := (\mathcal{H} \otimes \mathcal{K}, \pi_{\mathcal{H} \triangleleft \mathcal{K}}) \in \mathsf{Rep}(A).$
- ▶ This leads to the functor $Rep(A) \times Rep(\hat{\mathbb{G}}) \rightarrow Rep(A)$.
- We have the identity

$$\mathcal{H} \triangleleft (\mathcal{K} \boxtimes \mathcal{K}') = (\mathcal{H} \triangleleft \mathcal{K}) \triangleleft \mathcal{K}',$$

where $U_{\mathcal{K}} \boxtimes U_{\mathcal{K}'} := U_{\mathcal{K}',23} U_{\mathcal{K},13} \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K}) \bar{\otimes} L^{\infty}(\hat{\mathbb{G}}).$

- ▶ Let $\mathcal{H} \in \text{Rep}(A)$ and $\mathcal{K} \in \text{Rep}(\hat{\mathbb{G}})$. We want to define an object $\mathcal{H} \triangleleft \mathcal{K} \in \text{Rep}(A)$.
- Consider $\phi_{\mathcal{K}}: C_0^u(\mathbb{G}) \to B(\mathcal{K})$ and its normal extension $\tilde{\phi}_{\mathcal{K}}: C_0^u(\mathbb{G})^{**} \to B(\mathcal{K})$. Then we can define

$$\pi_{\mathcal{H} \triangleleft \mathcal{K}} : A \to B(\mathcal{H} \otimes \mathcal{K}) : a \mapsto (\pi_{\mathcal{H}} \otimes \tilde{\phi}_{\mathcal{K}})(\alpha^{u}(a)).$$

- $\vdash \mathcal{H} \triangleleft \mathcal{K} := (\mathcal{H} \otimes \mathcal{K}, \pi_{\mathcal{H} \triangleleft \mathcal{K}}) \in \mathsf{Rep}(A).$
- ▶ This leads to the functor $Rep(A) \times Rep(\hat{\mathbb{G}}) \rightarrow Rep(A)$.
- We have the identity

$$\mathcal{H} \triangleleft (\mathcal{K} \boxtimes \mathcal{K}') = (\mathcal{H} \triangleleft \mathcal{K}) \triangleleft \mathcal{K}',$$

where $U_{\mathcal{K}} \boxtimes U_{\mathcal{K}'} := U_{\mathcal{K}',23} U_{\mathcal{K},13} \in B(\mathcal{H} \otimes \mathcal{K}) \bar{\otimes} L^{\infty}(\hat{\mathbb{G}}).$

▶ We obtain the W^* -module category $Rep(A) \bowtie Rep(\hat{\mathbb{G}})$.

▶ Let $\mathcal{G} \in \mathsf{Corr}^{\mathbb{G}}(A, B)$ be given.

- ▶ Let $\mathcal{G} \in \mathsf{Corr}^{\mathbb{G}}(A, B)$ be given.
- Consider the induced functor

$$F_{\mathcal{G}}: \mathsf{Rep}(B) \to \mathsf{Rep}(A): \mathcal{H} \mapsto \mathcal{G} \boxtimes_B \mathcal{H}.$$

- ▶ Let $\mathcal{G} \in \mathsf{Corr}^{\mathbb{G}}(A, B)$ be given.
- Consider the induced functor

$$F_{\mathcal{G}}: \operatorname{\mathsf{Rep}}(B) \to \operatorname{\mathsf{Rep}}(A): \mathcal{H} \mapsto \mathcal{G} \boxtimes_B \mathcal{H}.$$

▶ The structure of a Rep($\hat{\mathbb{G}}$)-module functor on $F_{\mathcal{G}}$ consists of a natural collection of unitaries

$$F_{\mathcal{G}}(\mathcal{H} \triangleleft \mathcal{K}) = \mathcal{G} \boxtimes_{B} (\mathcal{H} \triangleleft \mathcal{K}) \xrightarrow{S_{\mathcal{G},\mathcal{H},\mathcal{K}}} (\mathcal{G} \boxtimes_{B} \mathcal{H}) \triangleleft \mathcal{K} = F_{\mathcal{G}}(\mathcal{H}) \triangleleft \mathcal{K}$$
satisfying natural compatibilities.

- ▶ Let $\mathcal{G} \in \mathsf{Corr}^{\mathbb{G}}(A, B)$ be given.
- Consider the induced functor

$$F_{\mathcal{G}}: \operatorname{\mathsf{Rep}}(B) \to \operatorname{\mathsf{Rep}}(A): \mathcal{H} \mapsto \mathcal{G} \boxtimes_B \mathcal{H}.$$

▶ The structure of a Rep($\hat{\mathbb{G}}$)-module functor on $F_{\mathcal{G}}$ consists of a natural collection of unitaries

$$F_{\mathcal{G}}(\mathcal{H} \triangleleft \mathcal{K}) = \mathcal{G} \boxtimes_{B} (\mathcal{H} \triangleleft \mathcal{K}) \xrightarrow{S_{\mathcal{G},\mathcal{H},\mathcal{K}}} (\mathcal{G} \boxtimes_{B} \mathcal{H}) \triangleleft \mathcal{K} = F_{\mathcal{G}}(\mathcal{H}) \triangleleft \mathcal{K}$$
satisfying natural compatibilities.

▶ Defining these unitaries is somehow delicate.

▶ Fix $\mathcal{G} \in \mathsf{Corr}^{\mathbb{G}}(A, B)$ and $\mathcal{K} \in \mathsf{Rep}(\hat{\mathbb{G}})$.

- ▶ Fix $\mathcal{G} \in \mathsf{Corr}^{\mathbb{G}}(A, B)$ and $\mathcal{K} \in \mathsf{Rep}(\hat{\mathbb{G}})$.
- ▶ Define a unitary $\mathcal{G} \boxtimes_B (L^2(B) \triangleleft \mathcal{K}) \rightarrow \mathcal{G} \triangleleft \mathcal{K}$ by

$$x\otimes_B(\xi\otimes\eta)\mapsto (\mathsf{id}\otimes\phi_{\mathcal{K}})(\mathbb{U}_{\mathcal{G}})(x\otimes1)(\mathsf{id}\otimes\phi_{\mathcal{K}})(\mathbb{U}_{\beta}^*)(\xi\otimes\eta),$$

where $x \in \mathcal{L}_B(L^2(B), \mathcal{G}), \xi \in L^2(B)$ and $\eta \in \mathcal{K}$.

- ▶ Fix $\mathcal{G} \in \mathsf{Corr}^{\mathbb{G}}(A, B)$ and $\mathcal{K} \in \mathsf{Rep}(\hat{\mathbb{G}})$.
- ▶ Define a unitary $\mathcal{G} \boxtimes_B (L^2(B) \triangleleft \mathcal{K}) \to \mathcal{G} \triangleleft \mathcal{K}$ by $x \otimes_B (\xi \otimes \eta) \mapsto (\mathrm{id} \otimes \phi_{\mathcal{K}})(\mathbb{U}_{\mathcal{G}})(x \otimes 1)(\mathrm{id} \otimes \phi_{\mathcal{K}})(\mathbb{U}_{\mathcal{G}}^*)(\xi \otimes \eta),$

where
$$x \in \mathcal{L}_B(L^2(B), \mathcal{G}), \xi \in L^2(B)$$
 and $\eta \in \mathcal{K}$.

We then obtain the A-linear unitary

$$S_{\mathcal{G},L^2(B),\mathcal{K}}:\mathcal{G}\boxtimes_B(L^2(B)\mathrel{\triangleleft}\mathcal{K})\cong\mathcal{G}\mathrel{\triangleleft}\mathcal{K}\cong(\mathcal{G}\boxtimes_BL^2(B))\mathrel{\triangleleft}\mathcal{K}.$$

- ▶ Fix $\mathcal{G} \in \mathsf{Corr}^{\mathbb{G}}(A, B)$ and $\mathcal{K} \in \mathsf{Rep}(\hat{\mathbb{G}})$.
- ▶ Define a unitary $\mathcal{G} \boxtimes_B (L^2(B) \triangleleft \mathcal{K}) \rightarrow \mathcal{G} \triangleleft \mathcal{K}$ by

$$x \otimes_B (\xi \otimes \eta) \mapsto (\operatorname{id} \otimes \phi_{\mathcal{K}})(\mathbb{U}_{\mathcal{G}})(x \otimes 1)(\operatorname{id} \otimes \phi_{\mathcal{K}})(\mathbb{U}_{\beta}^*)(\xi \otimes \eta),$$

where
$$x \in \mathcal{L}_B(L^2(B), \mathcal{G}), \xi \in L^2(B)$$
 and $\eta \in \mathcal{K}$.

▶ We then obtain the *A*-linear unitary

$$S_{\mathcal{G},L^2(B),\mathcal{K}}:\mathcal{G}\boxtimes_B (L^2(B)\triangleleft\mathcal{K})\cong\mathcal{G}\triangleleft\mathcal{K}\cong (\mathcal{G}\boxtimes_B L^2(B))\triangleleft\mathcal{K}.$$

▶ Use the fact that $L^2(B) \in \text{Rep}(B)$ is a generator to find the natural unitaries

$$S_{\mathcal{G},\mathcal{H},\mathcal{K}}:\mathcal{G}\boxtimes_{\mathcal{B}}(\mathcal{H}\triangleleft\mathcal{K})\rightarrow(\mathcal{G}\boxtimes_{\mathcal{B}}\mathcal{H})\triangleleft\mathcal{K},\quad\mathcal{H}\in\mathsf{Rep}(\mathcal{B}).$$

▶ The functor $F_{\mathcal{G}} : \text{Rep}(B) \to \text{Rep}(A)$ together with the unitaries

$$S_{\mathcal{G},\mathcal{H},\mathcal{K}}:F_{\mathcal{G}}(\mathcal{H}\triangleleft\mathcal{K})\cong F_{\mathcal{G}}(\mathcal{H})\triangleleft\mathcal{K}$$

define an element of $\operatorname{Fun}_{\operatorname{Rep}(\hat{\mathbb{G}})}(\operatorname{Rep}(B), \operatorname{Rep}(A))$.

▶ The functor F_G : Rep(B) → Rep(A) together with the unitaries

$$S_{\mathcal{G},\mathcal{H},\mathcal{K}}:F_{\mathcal{G}}(\mathcal{H}\mathrel{\triangleleft}\mathcal{K})\cong F_{\mathcal{G}}(\mathcal{H})\mathrel{\triangleleft}\mathcal{K}$$

define an element of $\operatorname{Fun}_{\operatorname{Rep}(\hat{\mathbb{G}})}(\operatorname{Rep}(B), \operatorname{Rep}(A))$.

In this way, we get the functor

$$\hat{P}: \mathsf{Corr}^{\mathbb{G}}(A,B) \to \mathsf{Fun}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{Rep}(B),\mathsf{Rep}(A)).$$

▶ Let $F : \text{Rep}(B) \to \text{Rep}(A)$ be a normal *-functor together with a $\text{Rep}(\hat{\mathbb{G}})$ -module structure:

$$S_{\mathcal{H},\mathcal{K}}: F(\mathcal{H} \triangleleft \mathcal{K}) \rightarrow F(\mathcal{H}) \triangleleft \mathcal{K}, \quad \mathcal{H} \in \text{Rep}(\mathcal{B}), \quad \mathcal{K} \in \text{Rep}(\hat{\mathbb{G}}).$$

▶ Let $F : \text{Rep}(B) \to \text{Rep}(A)$ be a normal *-functor together with a $\text{Rep}(\hat{\mathbb{G}})$ -module structure:

$$S_{\mathcal{H},\mathcal{K}}: F(\mathcal{H} \triangleleft \mathcal{K}) \rightarrow F(\mathcal{H}) \triangleleft \mathcal{K}, \quad \mathcal{H} \in \mathsf{Rep}(\mathcal{B}), \quad \mathcal{K} \in \mathsf{Rep}(\hat{\mathbb{G}}).$$

▶ Let $(\mathcal{G}_F, \pi_F, \rho_F)$ be the associated A-B-correspondence.

▶ Let $F : \text{Rep}(B) \to \text{Rep}(A)$ be a normal *-functor together with a $\text{Rep}(\hat{\mathbb{G}})$ -module structure:

$$S_{\mathcal{H},\mathcal{K}}: F(\mathcal{H} \triangleleft \mathcal{K}) \rightarrow F(\mathcal{H}) \triangleleft \mathcal{K}, \quad \mathcal{H} \in \mathsf{Rep}(\mathcal{B}), \quad \mathcal{K} \in \mathsf{Rep}(\hat{\mathbb{G}}).$$

- ▶ Let $(\mathcal{G}_F, \pi_F, \rho_F)$ be the associated A-B-correspondence.
- ► Consider the unitary implementation $U_{\beta} \in B(L^2(B)) \bar{\otimes} L^{\infty}(\mathbb{G})$. The condition $(\pi_B \otimes \mathrm{id})\beta(b) = U_{\beta}(\pi_B(b) \otimes 1)U_{\beta}^*$ expresses exactly that

$$U_{\beta} \in {}_{B}\mathcal{L}(L^{2}(B) \triangleleft (L^{2}(\mathbb{G}),\mathbb{I}),L^{2}(B) \triangleleft (L^{2}(\mathbb{G}),\hat{W}_{21})).$$

▶ Let $F : \text{Rep}(B) \to \text{Rep}(A)$ be a normal *-functor together with a $\text{Rep}(\hat{\mathbb{G}})$ -module structure:

$$S_{\mathcal{H},\mathcal{K}}: F(\mathcal{H} \triangleleft \mathcal{K}) \rightarrow F(\mathcal{H}) \triangleleft \mathcal{K}, \quad \mathcal{H} \in \mathsf{Rep}(\mathcal{B}), \quad \mathcal{K} \in \mathsf{Rep}(\hat{\mathbb{G}}).$$

- ▶ Let $(\mathcal{G}_F, \pi_F, \rho_F)$ be the associated A-B-correspondence.
- ► Consider the unitary implementation $U_{\beta} \in B(L^2(B)) \bar{\otimes} L^{\infty}(\mathbb{G})$. The condition $(\pi_B \otimes \mathrm{id})\beta(b) = U_{\beta}(\pi_B(b) \otimes 1)U_{\beta}^*$ expresses exactly that

$$U_{\beta} \in {}_{B}\mathscr{L}(L^{2}(B) \triangleleft (L^{2}(\mathbb{G}), \mathbb{I}), L^{2}(B) \triangleleft (L^{2}(\mathbb{G}), \hat{W}_{21})).$$

Consequently, it makes sense to define

$$U_F := S_{L^2(B),(L^2(\mathbb{G}),\hat{W}_{21})} \circ F(U_\beta) \circ S_{L^2(B),(L^2(\mathbb{G}),\mathbb{I})}^* \in B(\mathcal{G}_F \otimes L^2(\mathbb{G})).$$

- ▶ Then:
 - 1. $U_F \in B(\mathcal{G}_F) \bar{\otimes} L^{\infty}(\mathbb{G})$.
 - 2. U_F is a \mathbb{G} -representation.
 - 3. $(\mathcal{G}_F, \pi_F, \rho_F, U_F) \in \mathsf{Corr}^{\mathbb{G}}(A, B)$.

- ▶ Then:
 - 1. $U_F \in B(\mathcal{G}_F) \bar{\otimes} L^{\infty}(\mathbb{G})$.
 - 2. U_F is a \mathbb{G} -representation.
 - 3. $(\mathcal{G}_F, \pi_F, \rho_F, U_F) \in \mathsf{Corr}^{\mathbb{G}}(A, B)$.
- ▶ If $\eta = (\eta_{\mathcal{H}})_{\mathcal{H} \in \mathsf{Rep}(B)} \in \mathsf{Nat}_{\mathsf{Rep}(\hat{\mathbb{G}})}(F, G)$, meaning that we also have commutative diagrams

$$F(\mathcal{H} \triangleleft \mathcal{K}) \xrightarrow{\eta_{\mathcal{H} \triangleleft \mathcal{K}}} G(\mathcal{H} \triangleleft \mathcal{K})$$

$$\downarrow S_{\mathcal{H}, \mathcal{K}} \qquad \qquad \downarrow S_{\mathcal{H}, \mathcal{K}}$$

$$F(\mathcal{H}) \triangleleft \mathcal{K} \xrightarrow{\eta_{\mathcal{H}} \triangleleft 1} G(\mathcal{H}) \triangleleft \mathcal{K}$$

then $\eta_{L^2(B)} \in {}_{A}\mathscr{L}_{B}^{\mathbb{G}}(\mathcal{G}_F, \mathcal{G}_G)$.

- ▶ Then:
 - 1. $U_F \in B(\mathcal{G}_F) \bar{\otimes} L^{\infty}(\mathbb{G})$.
 - 2. U_F is a \mathbb{G} -representation.
 - 3. $(\mathcal{G}_F, \pi_F, \rho_F, U_F) \in \mathsf{Corr}^{\mathbb{G}}(A, B)$.
- ▶ If $\eta = (\eta_{\mathcal{H}})_{\mathcal{H} \in \mathsf{Rep}(B)} \in \mathsf{Nat}_{\mathsf{Rep}(\hat{\mathbb{G}})}(F, G)$, meaning that we also have commutative diagrams

$$F(\mathcal{H} \triangleleft \mathcal{K}) \xrightarrow{\eta_{\mathcal{H}} \triangleleft \mathcal{K}} G(\mathcal{H} \triangleleft \mathcal{K})$$

$$S_{\mathcal{H},\mathcal{K}} \downarrow \qquad \qquad \downarrow S_{\mathcal{H},\mathcal{K}}$$

$$F(\mathcal{H}) \triangleleft \mathcal{K} \xrightarrow{\eta_{\mathcal{H}} \triangleleft 1} G(\mathcal{H}) \triangleleft \mathcal{K}$$

then $\eta_{L^2(B)} \in {}_{\mathcal{A}}\mathscr{L}_{B}^{\mathbb{G}}(\mathcal{G}_F, \mathcal{G}_G).$

In this way, we obtain the functor

$$\hat{Q} : \operatorname{\mathsf{Fun}}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{Rep}(B), \mathsf{Rep}(A)) \to \operatorname{\mathsf{Corr}}^{\mathbb{G}}(A, B).$$

Equivariant Eilenberg-Watts theorem - $\operatorname{Rep}(\hat{\mathbb{G}})$ -module version

The functors

$$\hat{P}: \mathsf{Corr}^{\mathbb{G}}(A, B) \to \mathsf{Fun}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{Rep}(B), \mathsf{Rep}(A))$$

$$\hat{Q}: \mathsf{Fun}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{Rep}(B), \mathsf{Rep}(A)) \to \mathsf{Corr}^{\mathbb{G}}(A, B)$$

are quasi-inverse to each other.

Proof (sketch).

▶ It is not so hard to see that $\hat{Q} \circ \hat{P} \cong id$.

Equivariant Eilenberg-Watts theorem - $\mathsf{Rep}(\hat{\mathbb{G}})$ -module version

The functors

$$\hat{P}: \mathsf{Corr}^{\mathbb{G}}(A,B) \to \mathsf{Fun}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{Rep}(B),\mathsf{Rep}(A))$$

$$\hat{Q}: \mathsf{Fun}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{Rep}(B), \mathsf{Rep}(A)) \to \mathsf{Corr}^{\mathbb{G}}(A, B)$$

are quasi-inverse to each other.

Proof (sketch).

- ▶ It is not so hard to see that $\hat{Q} \circ \hat{P} \cong id$.
- ▶ Hence, it suffices to show that \hat{Q} is fully faithful.

$$\mathsf{Nat}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{F},\mathsf{G}) \to {}_{\mathsf{A}}\mathscr{L}^{\mathbb{G}}_{\mathsf{B}}(\mathcal{G}_{\mathsf{F}},\mathcal{G}_{\mathsf{G}}) : \eta \mapsto \eta_{\mathsf{L}^2(\mathsf{B})}.$$

▶ More precisely, given $F, G \in \operatorname{Fun}_{\operatorname{Rep}(\hat{\mathbb{G}})}(\operatorname{Rep}(B), \operatorname{Rep}(A))$, one needs to argue the bijectivity of

$$\mathsf{Nat}_{\mathsf{Rep}(\hat{\mathbb{G}})}(F,G) \to {}_{A}\mathscr{L}^{\mathbb{G}}_{B}(\mathcal{G}_{F},\mathcal{G}_{G}) : \eta \mapsto \eta_{L^{2}(B)}.$$

Injectivity is clear.

$$\mathsf{Nat}_{\mathsf{Rep}(\hat{\mathbb{G}})}(F,G) \to {}_{A}\mathscr{L}^{\mathbb{G}}_{B}(\mathcal{G}_{F},\mathcal{G}_{G}) : \eta \mapsto \eta_{L^{2}(B)}.$$

- Injectivity is clear.
- Surjectivity is the hard part. We sketch the argument.

$$\mathsf{Nat}_{\mathsf{Rep}(\hat{\mathbb{G}})}(F,G) \to {}_{A}\mathscr{L}^{\mathbb{G}}_{B}(\mathcal{G}_{F},\mathcal{G}_{G}) : \eta \mapsto \eta_{L^{2}(B)}.$$

- Injectivity is clear.
- Surjectivity is the hard part. We sketch the argument.
- ▶ Let $\eta_1 \in {}_{A}\mathscr{L}_{B}^{\mathbb{G}}(\mathcal{G}_F, \mathcal{G}_G)$ be given.

$$\mathsf{Nat}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{F},\mathsf{G}) \to {}_{\mathsf{A}}\mathscr{L}^{\mathbb{G}}_{\mathsf{B}}(\mathcal{G}_{\mathsf{F}},\mathcal{G}_{\mathsf{G}}) : \eta \mapsto \eta_{\mathsf{L}^{2}(\mathsf{B})}.$$

- Injectivity is clear.
- Surjectivity is the hard part. We sketch the argument.
- ▶ Let $\eta_1 \in {}_{A}\mathscr{L}_{B}^{\mathbb{G}}(\mathcal{G}_F, \mathcal{G}_G)$ be given.
- ▶ Define $\eta_2 := S_{L^2(B),(L^2(\mathbb{G}),\hat{W}_{21})}^*(\eta_1 \otimes 1) S_{L^2(B),(L^2(\mathbb{G}),\hat{W}_{21})}$, which is an *A*-linear morphism

$$F(L^2(B) \triangleleft (L^2(\mathbb{G}), \hat{W}_{21})) \rightarrow G(L^2(B) \triangleleft (L^2(\mathbb{G}), \hat{W}_{21})).$$

More precisely, given F, G ∈ Fun_{Rep(Ĝ)}(Rep(B), Rep(A)), one needs to argue the bijectivity of

$$\mathsf{Nat}_{\mathsf{Rep}(\hat{\mathbb{G}})}(F,G) \to {}_{A}\mathscr{L}^{\mathbb{G}}_{B}(\mathcal{G}_{F},\mathcal{G}_{G}) : \eta \mapsto \eta_{L^{2}(B)}.$$

- Injectivity is clear.
- Surjectivity is the hard part. We sketch the argument.
- ▶ Let $\eta_1 \in {}_{A}\mathcal{L}_{B}^{\mathbb{G}}(\mathcal{G}_F, \mathcal{G}_G)$ be given.
- ▶ Define $\eta_2 := S^*_{L^2(B),(L^2(\mathbb{G}),\hat{W}_{21})}(\eta_1 \otimes 1)S_{L^2(B),(L^2(\mathbb{G}),\hat{W}_{21})}$, which is an *A*-linear morphism

$$F(L^2(B) \mathrel{\triangleleft} (L^2(\mathbb{G}), \hat{W}_{21})) \mathrel{\rightarrow} G(L^2(B) \mathrel{\triangleleft} (L^2(\mathbb{G}), \hat{W}_{21})).$$

Similarly, define an A-linear morphism

$$\eta_3: F(L^2(B) \triangleleft (L^2(\mathbb{G}) \boxtimes L^2(\mathbb{G}))) \rightarrow G(L^2(\mathbb{G}) \triangleleft (L^2(\mathbb{G}) \boxtimes L^2(\mathbb{G})))$$
 by
$$\eta_3:=S^*_{L^2(B) \triangleleft L^2(\mathbb{G}), L^2(\mathbb{G})}(\eta_2 \otimes 1)S_{L^2(B) \triangleleft L^2(\mathbb{G}), L^2(\mathbb{G})}.$$

► For every $x \in {}_B \mathcal{L}(L^2(B) \triangleleft (L^2(\mathbb{G}) \boxtimes L^2(\mathbb{G})))$, we have $G(x)\eta_3 = \eta_3 F(x)$.

- ► For every $x \in {}_B \mathcal{L}(L^2(B) \triangleleft (L^2(\mathbb{G}) \boxtimes L^2(\mathbb{G})))$, we have $G(x)\eta_3 = \eta_3 F(x)$.
- ▶ $L^2(B) \triangleleft (L^2(\mathbb{G}) \boxtimes L^2(\mathbb{G}))$ is a generator for Rep(B), so there is a unique natural transformation $\eta: F \Longrightarrow G$ satisfying $\eta_{L^2(B) \triangleleft (L^2(\mathbb{G}) \boxtimes L^2(\mathbb{G}))} = \eta_3$.

- For every $x \in {}_B\mathcal{L}(L^2(B) \triangleleft (L^2(\mathbb{G}) \boxtimes L^2(\mathbb{G})))$, we have $G(x)\eta_3 = \eta_3 F(x)$.
- ▶ $L^2(B) \triangleleft (L^2(\mathbb{G}) \boxtimes L^2(\mathbb{G}))$ is a generator for Rep(B), so there is a unique natural transformation $\eta : F \Longrightarrow G$ satisfying $\eta_{L^2(B) \triangleleft (L^2(\mathbb{G}) \boxtimes L^2(\mathbb{G}))} = \eta_3$.
- ► There is an isometric intertwiner $L^2(\mathbb{G}) \hookrightarrow L^2(\mathbb{G}) \boxtimes L^2(\mathbb{G})$. From this, we can conclude that $\eta_2 = \eta_{L^2(B) \triangleleft L^2(\mathbb{G})}$.

- ► For every $x \in {}_B \mathcal{L}(L^2(B) \triangleleft (L^2(\mathbb{G}) \boxtimes L^2(\mathbb{G})))$, we have $G(x)\eta_3 = \eta_3 F(x)$.
- ▶ $L^2(B) \triangleleft (L^2(\mathbb{G}) \boxtimes L^2(\mathbb{G}))$ is a generator for Rep(B), so there is a unique natural transformation $\eta : F \Longrightarrow G$ satisfying $\eta_{L^2(B) \triangleleft (L^2(\mathbb{G}) \boxtimes L^2(\mathbb{G}))} = \eta_3$.
- ► There is an isometric intertwiner $L^2(\mathbb{G}) \hookrightarrow L^2(\mathbb{G}) \boxtimes L^2(\mathbb{G})$. From this, we can conclude that $\eta_2 = \eta_{L^2(B) \triangleleft L^2(\mathbb{G})}$.
- We now want to argue that the diagram

$$F(\mathcal{H} \triangleleft \mathcal{K}) \xrightarrow{\eta_{\mathcal{H} \triangleleft \mathcal{K}}} G(\mathcal{H} \triangleleft \mathcal{K})$$

$$\downarrow S_{\mathcal{H},\mathcal{K}} \qquad \qquad \downarrow S_{\mathcal{H},\mathcal{K}}$$

$$F(\mathcal{H}) \triangleleft \mathcal{K} \xrightarrow{\eta_{\mathcal{H}} \triangleleft 1} G(\mathcal{H}) \triangleleft \mathcal{K}$$

commutes.

▶ By the definition of η_3 , the diagram commutes when $\mathcal{H} = L^2(B) \triangleleft L^2(\mathbb{G}) \in \text{Rep}(B)$ and $\mathcal{K} = L^2(\mathbb{G}) \in \text{Rep}(\hat{\mathbb{G}})$.

- ▶ By the definition of η_3 , the diagram commutes when $\mathcal{H} = L^2(B) \triangleleft L^2(\mathbb{G}) \in \text{Rep}(B)$ and $\mathcal{K} = L^2(\mathbb{G}) \in \text{Rep}(\widehat{\mathbb{G}})$.
- ▶ Since $L^2(B) \triangleleft L^2(\mathbb{G})$ generates $\operatorname{Rep}(B)$ and since $L^2(\mathbb{G})$ generates the full subcategory $\operatorname{Rep}(L^\infty(\mathbb{G})) \subseteq \operatorname{Rep}(\hat{\mathbb{G}})$, we conclude that the diagram commutes when $\mathcal{H} \in \operatorname{Rep}(B)$ and $\mathcal{K} \in \operatorname{Rep}(L^\infty(\mathbb{G}))$.

- ▶ By the definition of η_3 , the diagram commutes when $\mathcal{H} = L^2(B) \triangleleft L^2(\mathbb{G}) \in \text{Rep}(B)$ and $\mathcal{K} = L^2(\mathbb{G}) \in \text{Rep}(\widehat{\mathbb{G}})$.
- ▶ Since $L^2(B) \triangleleft L^2(\mathbb{G})$ generates $\operatorname{Rep}(B)$ and since $L^2(\mathbb{G})$ generates the full subcategory $\operatorname{Rep}(L^\infty(\mathbb{G})) \subseteq \operatorname{Rep}(\hat{\mathbb{G}})$, we conclude that the diagram commutes when $\mathcal{H} \in \operatorname{Rep}(B)$ and $\mathcal{K} \in \operatorname{Rep}(L^\infty(\mathbb{G}))$.
- ▶ If $K \in \text{Rep}(\mathbb{G})$, then $K \boxtimes L^2(\mathbb{G}) \in \text{Rep}(L^{\infty}(\mathbb{G}))$. By a diagram chase, we then find that the diagram commutes when $\mathcal{H} \in \text{Rep}(B)$ and $K \in \text{Rep}(\hat{\mathbb{G}})$.

- ▶ By the definition of η_3 , the diagram commutes when $\mathcal{H} = L^2(B) \triangleleft L^2(\mathbb{G}) \in \text{Rep}(\hat{\mathbb{G}})$ and $\mathcal{K} = L^2(\mathbb{G}) \in \text{Rep}(\hat{\mathbb{G}})$.
- ▶ Since $L^2(B) \triangleleft L^2(\mathbb{G})$ generates $\operatorname{Rep}(B)$ and since $L^2(\mathbb{G})$ generates the full subcategory $\operatorname{Rep}(L^\infty(\mathbb{G})) \subseteq \operatorname{Rep}(\hat{\mathbb{G}})$, we conclude that the diagram commutes when $\mathcal{H} \in \operatorname{Rep}(B)$ and $\mathcal{K} \in \operatorname{Rep}(L^\infty(\mathbb{G}))$.
- ▶ If $K \in \text{Rep}(\mathbb{G})$, then $K \boxtimes L^2(\mathbb{G}) \in \text{Rep}(L^{\infty}(\mathbb{G}))$. By a diagram chase, we then find that the diagram commutes when $\mathcal{H} \in \text{Rep}(B)$ and $K \in \text{Rep}(\hat{\mathbb{G}})$.
- ► Conclusion: $\eta \in \operatorname{Nat}_{\operatorname{Rep}(\hat{\mathbb{G}})}(F, G)$.

- ▶ By the definition of η_3 , the diagram commutes when $\mathcal{H} = L^2(B) \triangleleft L^2(\mathbb{G}) \in \text{Rep}(B)$ and $\mathcal{K} = L^2(\mathbb{G}) \in \text{Rep}(\widehat{\mathbb{G}})$.
- ▶ Since $L^2(B) \triangleleft L^2(\mathbb{G})$ generates $\operatorname{Rep}(B)$ and since $L^2(\mathbb{G})$ generates the full subcategory $\operatorname{Rep}(L^\infty(\mathbb{G})) \subseteq \operatorname{Rep}(\hat{\mathbb{G}})$, we conclude that the diagram commutes when $\mathcal{H} \in \operatorname{Rep}(B)$ and $\mathcal{K} \in \operatorname{Rep}(L^\infty(\mathbb{G}))$.
- ▶ If $K \in \text{Rep}(\mathbb{G})$, then $K \boxtimes L^2(\mathbb{G}) \in \text{Rep}(L^{\infty}(\mathbb{G}))$. By a diagram chase, we then find that the diagram commutes when $\mathcal{H} \in \text{Rep}(B)$ and $K \in \text{Rep}(\hat{\mathbb{G}})$.
- ► Conclusion: $\eta \in Nat_{Rep(\hat{\mathbb{G}})}(F, G)$.
- Finally, by the definition of η_2 , we can then conclude that $\eta_{L^2(B)} = \eta_1$.

We have seen that

$$\mathsf{Corr}^{\mathbb{G}}(A,B) \simeq \mathsf{Fun}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{Rep}(B),\mathsf{Rep}(A)).$$

We have seen that

$$\mathsf{Corr}^{\mathbb{G}}(A,B) \simeq \mathsf{Fun}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{Rep}(B),\mathsf{Rep}(A)).$$

▶ Taking $\mathbb{G} = \{1\}$ recovers the usual Eilenberg-Watts theorem

$$Corr(A, B) \simeq Fun(Rep(B), Rep(A)).$$

We have seen that

$$\mathsf{Corr}^{\mathbb{G}}(A,B) \simeq \mathsf{Fun}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{Rep}(B),\mathsf{Rep}(A)).$$

 \blacktriangleright Taking $\mathbb{G}=\{1\}$ recovers the usual Eilenberg-Watts theorem

$$Corr(A, B) \simeq Fun(Rep(B), Rep(A)).$$

▶ Taking $A = B = \mathbb{C}$ recovers the equivalence

$$\mathsf{End}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{Hilb}) \simeq \mathsf{Rep}(\mathbb{G}).$$

We have seen that

$$\mathsf{Corr}^{\mathbb{G}}(A,B) \simeq \mathsf{Fun}_{\mathsf{Rep}(\hat{\mathbb{G}})}(\mathsf{Rep}(B),\mathsf{Rep}(A)).$$

▶ Taking $\mathbb{G} = \{1\}$ recovers the usual Eilenberg-Watts theorem

$$Corr(A, B) \simeq Fun(Rep(B), Rep(A)).$$

▶ Taking $A = B = \mathbb{C}$ recovers the equivalence

$$\operatorname{End}_{\operatorname{Rep}(\hat{\mathbb{G}})}(\operatorname{Hilb}) \simeq \operatorname{Rep}(\mathbb{G}).$$

▶ Rep(A) and Rep(B) are equivalent as Rep($\widehat{\mathbb{G}}$)-module W^* -categories if and only if (A, α) and (B, β) are \mathbb{G} -equivariantly Morita equivalent, i.e. there exists a \mathbb{G} -A-B-correspondence $(\mathcal{G}, \pi, \rho, U)$ such that π and ρ are faithful and $\pi(A)' = \rho(B)$.

The module category $\mathsf{Rep}^{\mathbb{G}}(A) \rhd \mathsf{Rep}(\mathbb{G})$

▶ What about a Rep(ℂ)-module version of the equivariant Eilenberg-Watts theorem?

- What about a Rep(G)-module version of the equivariant Eilenberg-Watts theorem?
- ► $Corr^{\mathbb{G}}(A, B) \simeq Fun_{Rep(\mathbb{G})}(Rep^{\mathbb{G}}(B), Rep^{\mathbb{G}}(A)).$

- ▶ What about a Rep(ℂ)-module version of the equivariant Eilenberg-Watts theorem?
- ► $\mathsf{Corr}^{\mathbb{G}}(A, B) \simeq \mathsf{Fun}_{\mathsf{Rep}(\mathbb{G})}(\mathsf{Rep}^{\mathbb{G}}(B), \mathsf{Rep}^{\mathbb{G}}(A)).$
- ▶ Recall: Rep^ℂ(A) = Corr^ℂ(A, ℂ). Objects consist of triples (\mathcal{H}, π, U) where $\pi : A \to B(\mathcal{H})$ is a unital, normal *-representation, $U \in B(\mathcal{H}) \bar{\otimes} L^{\infty}(\mathbb{G})$ is a unitary \mathbb{G} -representation satisfying $(\pi \otimes \mathrm{id}) \alpha(a) = U(\pi(a) \otimes 1) U^*$.

- What about a Rep(G)-module version of the equivariant Eilenberg-Watts theorem?
- ► $\mathsf{Corr}^{\mathbb{G}}(A, B) \simeq \mathsf{Fun}_{\mathsf{Rep}(\mathbb{G})}(\mathsf{Rep}^{\mathbb{G}}(B), \mathsf{Rep}^{\mathbb{G}}(A)).$
- ▶ Recall: $\operatorname{Rep}^{\mathbb{G}}(A) = \operatorname{Corr}^{\mathbb{G}}(A,\mathbb{C})$. Objects consist of triples (\mathcal{H},π,U) where $\pi:A\to B(\mathcal{H})$ is a unital, normal *-representation, $U\in B(\mathcal{H})\bar{\otimes}L^{\infty}(\mathbb{G})$ is a unitary \mathbb{G} -representation satisfying $(\pi\otimes\operatorname{id})\alpha(a)=U(\pi(a)\otimes 1)U^*$.
- Let $A \bowtie \mathbb{G}$ be an action. We define a functor

$$\triangleleft : \mathsf{Rep}^{\mathbb{G}}(A) \times \mathsf{Rep}(\mathbb{G}) \to \mathsf{Rep}^{\mathbb{G}}(A)$$

$$(\mathcal{H}, \pi_{\mathcal{H}}, U_{\mathcal{H}}) \triangleleft (\mathcal{K}, U_{\mathcal{K}}) \coloneqq (\mathcal{H} \otimes \mathcal{K}, \mathsf{a} \mapsto \pi_{\mathcal{H}}(\mathsf{a}) \otimes 1, U_{\mathcal{H}, 13} U_{\mathcal{K}, 23}).$$

The module category $Rep^{\mathbb{G}}(A) ightharpoonup Rep(\mathbb{G})$

- ▶ What about a Rep(ℂ)-module version of the equivariant Eilenberg-Watts theorem?
- ► $\mathsf{Corr}^{\mathbb{G}}(A, B) \simeq \mathsf{Fun}_{\mathsf{Rep}(\mathbb{G})}(\mathsf{Rep}^{\mathbb{G}}(B), \mathsf{Rep}^{\mathbb{G}}(A)).$
- ▶ Recall: $\operatorname{Rep}^{\mathbb{G}}(A) = \operatorname{Corr}^{\mathbb{G}}(A,\mathbb{C})$. Objects consist of triples (\mathcal{H},π,U) where $\pi:A\to B(\mathcal{H})$ is a unital, normal *-representation, $U\in B(\mathcal{H})\bar{\otimes}L^{\infty}(\mathbb{G})$ is a unitary \mathbb{G} -representation satisfying $(\pi\otimes\operatorname{id})\alpha(a)=U(\pi(a)\otimes 1)U^*$.
- Let $A \bowtie \mathbb{G}$ be an action. We define a functor

$$\triangleleft : \mathsf{Rep}^{\mathbb{G}}(A) \times \mathsf{Rep}(\mathbb{G}) \to \mathsf{Rep}^{\mathbb{G}}(A)$$

$$(\mathcal{H}, \pi_{\mathcal{H}}, U_{\mathcal{H}}) \triangleleft (\mathcal{K}, U_{\mathcal{K}}) \coloneqq (\mathcal{H} \otimes \mathcal{K}, a \mapsto \pi_{\mathcal{H}}(a) \otimes 1, U_{\mathcal{H}, 13} U_{\mathcal{K}, 23}).$$

▶ Then $\mathcal{H} \triangleleft (\mathcal{K} \boxtimes \mathcal{K}') = (\mathcal{H} \triangleleft \mathcal{K}) \triangleleft \mathcal{K}'$ for $\mathcal{H} \in \mathsf{Rep}^{\mathbb{G}}(A)$ and $\mathcal{K}, \mathcal{K}' \in \mathsf{Rep}(\mathbb{G})$.

- ▶ What about a Rep(ℂ)-module version of the equivariant Eilenberg-Watts theorem?
- ► $Corr^{\mathbb{G}}(A, B) \simeq Fun_{Rep(\mathbb{G})}(Rep^{\mathbb{G}}(B), Rep^{\mathbb{G}}(A)).$
- ▶ Recall: $Rep^{\mathbb{G}}(A) = Corr^{\mathbb{G}}(A, \mathbb{C})$. Objects consist of triples (\mathcal{H}, π, U) where $\pi : A \to B(\mathcal{H})$ is a unital, normal *-representation, $U \in B(\mathcal{H}) \bar{\otimes} L^{\infty}(\mathbb{G})$ is a unitary \mathbb{G} -representation satisfying $(\pi \otimes id)\alpha(a) = U(\pi(a) \otimes 1)U^*$.

$$\triangleleft : \mathsf{Rep}^{\mathbb{G}}(A) \times \mathsf{Rep}(\mathbb{G}) \to \mathsf{Rep}^{\mathbb{G}}(A)$$

$$(\mathcal{H}, \pi_{\mathcal{H}}, U_{\mathcal{H}}) \triangleleft (\mathcal{K}, U_{\mathcal{K}}) \coloneqq (\mathcal{H} \otimes \mathcal{K}, a \mapsto \pi_{\mathcal{H}}(a) \otimes 1, U_{\mathcal{H}, 13} U_{\mathcal{K}, 23}).$$

- ► Then $\mathcal{H} \triangleleft (\mathcal{K} \boxtimes \mathcal{K}') = (\mathcal{H} \triangleleft \mathcal{K}) \triangleleft \mathcal{K}'$ for $\mathcal{H} \in \mathsf{Rep}^{\mathbb{G}}(A)$ and $\mathcal{K}.\mathcal{K}' \in \mathsf{Rep}(\mathbb{G}).$
- We obtain the W^* -module category $\operatorname{Rep}^{\mathbb{G}}(A) \hookrightarrow \operatorname{Rep}(\mathbb{G})$.

From equivariant correspondence to module functor

▶ Given $\mathcal{G} \in \mathsf{Corr}^{\mathbb{G}}(A,B)$, we have the induced normal *-functor $F_{\mathcal{G}} : \mathsf{Rep}^{\mathbb{G}}(B) \to \mathsf{Rep}^{\mathbb{G}}(A) : \mathcal{H} \mapsto \mathcal{G} \boxtimes_B \mathcal{H}.$

From equivariant correspondence to module functor

▶ Given $\mathcal{G} \in \mathsf{Corr}^{\mathbb{G}}(A, B)$, we have the induced normal *-functor $F_{\mathcal{G}} : \mathsf{Rep}^{\mathbb{G}}(B) \to \mathsf{Rep}^{\mathbb{G}}(A) : \mathcal{H} \mapsto \mathcal{G} \boxtimes_B \mathcal{H}.$

▶ It becomes a Rep(ℂ)-module functor for the unitaries

$$S_{\mathcal{G},\mathcal{H},\mathcal{K}}:\mathcal{G}\boxtimes_{B}(\mathcal{H}\triangleleft\mathcal{K})\cong(\mathcal{G}\boxtimes_{B}\mathcal{H})\triangleleft\mathcal{K}:x\otimes_{B}(\xi\otimes\eta)\mapsto(x\otimes_{B}\xi)\otimes\eta.$$

From equivariant correspondence to module functor

▶ Given $\mathcal{G} \in \mathsf{Corr}^{\mathbb{G}}(A,B)$, we have the induced normal *-functor

$$F_{\mathcal{G}}: \mathsf{Rep}^{\mathbb{G}}(B) \to \mathsf{Rep}^{\mathbb{G}}(A): \mathcal{H} \mapsto \mathcal{G} \boxtimes_B \mathcal{H}.$$

It becomes a $\mathsf{Rep}(\mathbb{G})$ -module functor for the unitaries

$$S_{\mathcal{G},\mathcal{H},\mathcal{K}}:\mathcal{G}\boxtimes_{B}(\mathcal{H}\triangleleft\mathcal{K})\cong(\mathcal{G}\boxtimes_{B}\mathcal{H})\triangleleft\mathcal{K}:x\otimes_{B}(\xi\otimes\eta)\mapsto(x\otimes_{B}\xi)\otimes\eta.$$

In this way, we obtain the functor

$$P: \mathsf{Corr}^{\mathbb{G}}(A, B) \to \mathsf{Fun}_{\mathsf{Rep}(\mathbb{G})}(\mathsf{Rep}^{\mathbb{G}}(B), \mathsf{Rep}^{\mathbb{G}}(A)).$$

$$S_{\mathcal{H},\mathcal{K}}: F(\mathcal{H} \triangleleft \mathcal{K}) \rightarrow F(\mathcal{H}) \triangleleft \mathcal{K}, \quad \mathcal{H} \in \mathsf{Rep}^{\mathbb{G}}(B), \quad \mathcal{K} \in \mathsf{Rep}(\mathbb{G}).$$

▶ Let $F : Rep^{\mathbb{G}}(B) \to Rep^{\mathbb{G}}(A)$ be a normal *-functor together with a $Rep(\mathbb{G})$ -module structure:

$$S_{\mathcal{H},\mathcal{K}}: F(\mathcal{H} \triangleleft \mathcal{K}) \rightarrow F(\mathcal{H}) \triangleleft \mathcal{K}, \quad \mathcal{H} \in \mathsf{Rep}^{\mathbb{G}}(B), \quad \mathcal{K} \in \mathsf{Rep}(\mathbb{G}).$$

► Consider $(\mathcal{G}_F, \pi_F, U_F) := F((L^2(B), \pi_B, U_\beta)) \in \mathsf{Rep}^{\mathbb{G}}(A)$.

$$S_{\mathcal{H},\mathcal{K}}: F(\mathcal{H} \triangleleft \mathcal{K}) \rightarrow F(\mathcal{H}) \triangleleft \mathcal{K}, \quad \mathcal{H} \in \mathsf{Rep}^{\mathbb{G}}(B), \quad \mathcal{K} \in \mathsf{Rep}(\mathbb{G}).$$

- ► Consider $(\mathcal{G}_F, \pi_F, U_F) := F((L^2(B), \pi_B, U_\beta)) \in \mathsf{Rep}^{\mathbb{G}}(A)$.
- ▶ Goal: Construct a normal anti-*-representation $\rho_F: B \to B(\mathcal{G}_F)$ such that $(\mathcal{G}_F, \pi_F, \rho_F, U_F) \in \mathsf{Corr}^{\mathbb{G}}(A, B)$.

$$S_{\mathcal{H},\mathcal{K}}: F(\mathcal{H} \triangleleft \mathcal{K}) \rightarrow F(\mathcal{H}) \triangleleft \mathcal{K}, \quad \mathcal{H} \in \mathsf{Rep}^{\mathbb{G}}(B), \quad \mathcal{K} \in \mathsf{Rep}(\mathbb{G}).$$

- ► Consider $(\mathcal{G}_F, \pi_F, U_F) := F((L^2(B), \pi_B, U_\beta)) \in \mathsf{Rep}^{\mathbb{G}}(A)$.
- ▶ Goal: Construct a normal anti-*-representation $\rho_F: B \to B(\mathcal{G}_F)$ such that $(\mathcal{G}_F, \pi_F, \rho_F, U_F) \in \mathsf{Corr}^{\mathbb{G}}(A, B)$.
- $\rho_F(b) := F(\rho_B(b))$ no longer makes sense!

$$S_{\mathcal{H},\mathcal{K}}: F(\mathcal{H} \triangleleft \mathcal{K}) \rightarrow F(\mathcal{H}) \triangleleft \mathcal{K}, \quad \mathcal{H} \in \mathsf{Rep}^{\mathbb{G}}(B), \quad \mathcal{K} \in \mathsf{Rep}(\mathbb{G}).$$

- ► Consider $(\mathcal{G}_F, \pi_F, U_F) := F((L^2(B), \pi_B, U_\beta)) \in \mathsf{Rep}^{\mathbb{G}}(A)$.
- ▶ Goal: Construct a normal anti-*-representation $\rho_F: B \to B(\mathcal{G}_F)$ such that $(\mathcal{G}_F, \pi_F, \rho_F, U_F) \in \mathsf{Corr}^{\mathbb{G}}(A, B)$.
- $\rho_F(b) \coloneqq F(\rho_B(b))$ no longer makes sense!
- ▶ Rather, one defines $\rho_F : B \to B(\mathcal{G}_F)$ by

$$\rho_{F}(b)\otimes 1=U_{F}S_{L^{2}(B),L^{2}(\mathbb{G})}F((\rho_{B}\otimes R)(\beta(b))S_{L^{2}(B),L^{2}(\mathbb{G})}^{*}U_{F}^{*}.$$

$$S_{\mathcal{H},\mathcal{K}}: F(\mathcal{H} \triangleleft \mathcal{K}) \rightarrow F(\mathcal{H}) \triangleleft \mathcal{K}, \quad \mathcal{H} \in \mathsf{Rep}^{\mathbb{G}}(B), \quad \mathcal{K} \in \mathsf{Rep}(\mathbb{G}).$$

- ► Consider $(\mathcal{G}_F, \pi_F, U_F) := F((L^2(B), \pi_B, U_\beta)) \in \mathsf{Rep}^{\mathbb{G}}(A)$.
- ▶ Goal: Construct a normal anti-*-representation $\rho_F: B \to B(\mathcal{G}_F)$ such that $(\mathcal{G}_F, \pi_F, \rho_F, U_F) \in \mathsf{Corr}^{\mathbb{G}}(A, B)$.
- $\rho_F(b) := F(\rho_B(b))$ no longer makes sense!
- ▶ Rather, one defines $\rho_F: B \to B(\mathcal{G}_F)$ by $\rho_F(b) \otimes 1 = U_F S_{L^2(B), L^2(\mathbb{G})} F((\rho_B \otimes R)(\beta(b)) S_{L^2(B), L^2(\mathbb{G})}^* U_F^*.$
- ▶ Then $(\mathcal{G}_F, \pi_F, \rho_F, U_F) \in \mathsf{Corr}^{\mathbb{G}}(A, B)$.

$$S_{\mathcal{H},\mathcal{K}}: F(\mathcal{H} \triangleleft \mathcal{K}) \rightarrow F(\mathcal{H}) \triangleleft \mathcal{K}, \quad \mathcal{H} \in \mathsf{Rep}^{\mathbb{G}}(B), \quad \mathcal{K} \in \mathsf{Rep}(\mathbb{G}).$$

- ► Consider $(\mathcal{G}_F, \pi_F, U_F) := F((L^2(B), \pi_B, U_\beta)) \in \mathsf{Rep}^{\mathbb{G}}(A)$.
- ▶ Goal: Construct a normal anti-*-representation $\rho_F: B \to B(\mathcal{G}_F)$ such that $(\mathcal{G}_F, \pi_F, \rho_F, U_F) \in \mathsf{Corr}^{\mathbb{G}}(A, B)$.
- $\rho_F(b) \coloneqq F(\rho_B(b))$ no longer makes sense!
- ▶ Rather, one defines $\rho_F : B \to B(\mathcal{G}_F)$ by

$$\rho_F(b)\otimes 1=U_FS_{L^2(B),L^2(\mathbb{G})}F((\rho_B\otimes R)(\beta(b))S_{L^2(B),L^2(\mathbb{G})}^*U_F^*.$$

- ► Then $(\mathcal{G}_F, \pi_F, \rho_F, U_F) \in \mathsf{Corr}^{\mathbb{G}}(A, B)$.
- We obtain the functor

$$Q : \operatorname{\mathsf{Fun}}_{\operatorname{\mathsf{Rep}}(\mathbb{G})}(\operatorname{\mathsf{Rep}}^{\mathbb{G}}(B), \operatorname{\mathsf{Rep}}^{\mathbb{G}}(A)) \to \operatorname{\mathsf{Corr}}^{\mathbb{G}}(A, B).$$

Equivariant Eilenberg-Watts theorem - $\mathsf{Rep}(\mathbb{G})$ -module version

The functors

$$P: \mathsf{Corr}^{\mathbb{G}}(A,B) \to \mathsf{Fun}_{\mathsf{Rep}(\mathbb{G})}(\mathsf{Rep}^{\mathbb{G}}(B), \mathsf{Rep}^{\mathbb{G}}(A))$$

$$Q: \operatorname{\mathsf{Fun}}_{\operatorname{\mathsf{Rep}}(\mathbb{G})}(\operatorname{\mathsf{Rep}}^{\mathbb{G}}(B), \operatorname{\mathsf{Rep}}^{\mathbb{G}}(A)) o \operatorname{\mathsf{Corr}}^{\mathbb{G}}(A, B)$$

are quasi-inverse to each other.

Equivariant Eilenberg-Watts theorem - $\mathsf{Rep}(\mathbb{G})$ -module version

The functors

$$P: \mathsf{Corr}^{\mathbb{G}}(A, B) \to \mathsf{Fun}_{\mathsf{Rep}(\mathbb{G})}(\mathsf{Rep}^{\mathbb{G}}(B), \mathsf{Rep}^{\mathbb{G}}(A))$$

 $Q: \operatorname{\mathsf{Fun}}_{\operatorname{\mathsf{Rep}}(\mathbb{G})}(\operatorname{\mathsf{Rep}}^{\mathbb{G}}(B), \operatorname{\mathsf{Rep}}^{\mathbb{G}}(A)) \to \operatorname{\mathsf{Corr}}^{\mathbb{G}}(A, B)$

are quasi-inverse to each other.

Proof strategy is very similar as before.

Equivariant Eilenberg-Watts theorem - $\mathsf{Rep}(\mathbb{G})$ -module version

The functors

$$P: \mathsf{Corr}^{\mathbb{G}}(A,B) \to \mathsf{Fun}_{\mathsf{Rep}(\mathbb{G})}(\mathsf{Rep}^{\mathbb{G}}(B),\mathsf{Rep}^{\mathbb{G}}(A))$$

$$Q: \operatorname{\mathsf{Fun}}_{\operatorname{\mathsf{Rep}}(\mathbb{G})}(\operatorname{\mathsf{Rep}}^{\mathbb{G}}(B), \operatorname{\mathsf{Rep}}^{\mathbb{G}}(A)) o \operatorname{\mathsf{Corr}}^{\mathbb{G}}(A, B)$$

are quasi-inverse to each other.

- Proof strategy is very similar as before.
- In particular, also $\operatorname{Rep}^{\mathbb{G}}(A)$ is equivalent with $\operatorname{Rep}^{\mathbb{G}}(B)$ as $\operatorname{Rep}(\mathbb{G})$ -module W^* -categories if and only if (A,α) and (B,β) are \mathbb{G} -equivariantly Morita equivalent.

• Consider the crossed product $A \rtimes_{\alpha} \mathbb{G}$.

- Consider the crossed product $A \rtimes_{\alpha} \mathbb{G}$.
- ▶ We naturally can view

$$\operatorname{\mathsf{Rep}}(A \rtimes_{\alpha} \mathbb{G}) \subseteq \operatorname{\mathsf{Rep}}^{\mathbb{G}}(A).$$

- Consider the crossed product $A \rtimes_{\alpha} \mathbb{G}$.
- We naturally can view

$$\operatorname{\mathsf{Rep}}(A \rtimes_{\alpha} \mathbb{G}) \subseteq \operatorname{\mathsf{Rep}}^{\mathbb{G}}(A).$$

► The action $\operatorname{Rep}^{\mathbb{G}}(A) \hookrightarrow \operatorname{Rep}(\mathbb{G})$ restricts to an action $\operatorname{Rep}(A \rtimes_{\alpha} \mathbb{G}) \hookrightarrow \operatorname{Rep}(\mathbb{G})$.

- Consider the crossed product $A \rtimes_{\alpha} \mathbb{G}$.
- We naturally can view

$$\operatorname{\mathsf{Rep}}(A \rtimes_{\alpha} \mathbb{G}) \subseteq \operatorname{\mathsf{Rep}}^{\mathbb{G}}(A).$$

- ► The action $\operatorname{Rep}^{\mathbb{G}}(A) \hookrightarrow \operatorname{Rep}(\mathbb{G})$ restricts to an action $\operatorname{Rep}(A \rtimes_{\alpha} \mathbb{G}) \hookrightarrow \operatorname{Rep}(\mathbb{G})$.
- We also have

$$\mathsf{Corr}^{\mathbb{G}}(A,B) \simeq \mathsf{Fun}_{\mathsf{Rep}(\mathbb{G})}(\mathsf{Rep}(B \rtimes_{\beta} \mathbb{G}), \mathsf{Rep}(A \rtimes_{\alpha} \mathbb{G})).$$

Thanks for your attention!